Describe the Block Diagram of Digital Image Processing System

Here we discuss about the fundamental steps in Digital Image Processing and the Block Diagram of Digital Image Processing System with figure in step by step.

What is Image Processing?


Image processing is a method to convert an image into digital form and perform some operations on it, in order to get an enhanced image or to extract some useful information from it.

It is a type of signal dispensation in which input is an image, like video frame or photograph and output may be image or characteristics associated with that image.

Usually Image Processing system includes treating images as two dimensional signals while applying already set signal processing methods to them.

Purpose of Image processing


The purpose of image processing is divided into 5 groups. They are :

Visualization – Observe the objects that are not visible.

Image sharpening and restoration – To create a better image.

Image retrieval – Seek for the image of interest.

Measurement of pattern – Measures various objects in an image.

Image Recognition – Distinguish the objects in an image.

Block Diagram of Digital Image Processing System


Describe the Block Diagram of Digital Image Processing System

1. Image Acquisition

This is the first step or process of the fundamental steps of digital image processing.

Image acquisition could be as simple as being given an image that is already in digital form.

Generally, the image acquisition stage involves per-processing, such as scaling etc.

2. Image Enhancement

Image enhancement is among the simplest and most appealing areas of digital image processing.

Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to highlight certain features of interest in an image.

Such as, changing brightness & contrast etc.

3. Image Restoration

Image restoration is an area that also deals with improving the appearance of an image.

However, unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabilistic models of image degradation.

4. Color Image Processing

Color image processing is an area that has been gaining its importance because of the significant increase in the use of digital images over the Internet.

This may include color modeling and processing in a digital domain etc.

5. Wavelets and Multi resolution Processing

Wavelets are the foundation for representing images in various degrees of resolution.

Images subdivision successively into smaller regions for data compression and for pyramidal representation.

6. Compression

Compression deals with techniques for reducing the storage required to save an image or the bandwidth to transmit it.

Particularly in the uses of internet it is very much necessary to compress data.

7. Morphological Processing

Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape.

8. Segmentation

Segmentation procedures partition an image into its constituent parts or objects.

In general, autonomous segmentation is one of the most difficult tasks in digital image processing.

A rugged segmentation procedure brings the process a long way toward successful solution of imaging problems that require objects to be identified individually.

9. Representation and Description

Representation and description almost always follow the output of a segmentation stage, which usually is raw pixel data, constituting either the boundary of a region or all the points in the region itself.

Choosing a representation is only part of the solution for transforming raw data into a form suitable for subsequent computer processing.

Description deals with extracting attributes that result in some quantitative information of interest or are basic for differentiating one class of objects from another.

10. Object recognition

Recognition is the process that assigns a label, such as, “vehicle” to an object based on its descriptors.

11. Knowledge Base:

Knowledge may be as simple as detailing regions of an image where the information of interest is known to be located, thus limiting the search that has to be conducted in seeking that information.

The knowledge base also can be quite complex, such as an interrelated list of all major possible defects in a materials inspection problem or an image database containing high-resolution satellite images of a region in connection with change-detection applications.

About Bench Partner 62 Articles
Bench Partner at benchpartner.com are members who love to write about the blog and also share knowledge with other people.

Be the first to comment

Leave a Reply

Your email address will not be published.


*