Explain virtual machine security in cloud computing.

2 years ago
Cloud Computing

2011 ended with the popularization of an idea: Bringing VMs (virtual machines) onto the cloud. Recent years have seen great advancements in both cloud computing and virtualization On one hand there is the ability to pool various resources to provide software-as-a-service, infrastructure-as-a-service, and platform-as-a-service. At its most basic, this is what describes cloud computing. On the other hand, we have virtual machines that provide agility, flexibility, and scalability to the cloud resources by allowing the vendors to copy, move, and manipulate their VMs at will. The term virtual machine essentially describes sharing the resources of one single physical computer into various computers within itself. VMware and virtual boxes are very commonly used virtual systems on desktops. Cloud computing effectively stands for many computers pretending to be one computing environment. Obviously, cloud computing would have many virtualized systems to maximize resources.

Keeping this information in mind, we can now look into the security issues that arise within a cloud-computing scenario. As more and more organizations follow the “Into the Cloud” concept, malicious hackers keep finding ways to get their hands on valuable information by manipulating safeguards and breaching the security layers (if any) of cloud environments. One issue is that the cloud-computing scenario is not as transparent as it claims to be. The service user has no clue about how his information is processed and stored. In addition, the service user cannot directly control the flow of data/information storage and processing. The service provider usually is not aware of the details of the service running in his or her environment. Thus, possible attacks on the cloud-computing environment can be classified in to:

Resource attacks:

These kinds of attacks include manipulating the available resources into mounting a large-scale botnet attack. These kinds of attacks target either cloud providers or service providers.

Data attacks:

These kinds of attacks include unauthorized modification of sensitive data at nodes, performing configuration changes to enable a sniffing attack via a specific device etc. These attacks are focused on cloud providers, service providers, and also on service users.

Denial of Service attacks:

The creation of a new virtual machine is not a difficult task, and thus, creating rogue VMs and allocating huge spaces for them can lead to a Denial of Service attack for service providers when they opt to create a new VM on the cloud. This kind of attack is generally called virtual machine sprawling.

Backdoor:

Another threat to a virtual environment empowered by cloud computing is the use of backdoor VMs that leak sensitive information and can destroy data privacy.

Having virtual machines would indirectly allow anyone with access to the host disk files of the VM to take a snapshot or illegal copy of the whole System. This can lead to corporate espionage and piracy of legitimate products.

With so many obvious security issues (and a lot more can be added to the list), we need to enumerate some steps that can be used to secure virtualization in cloud computing.

The most neglected aspect of any organization is its physical security. An advanced social engineer can take advantage of weak physical-security policies an organization has put in place. Thus, it’s important to have a consistent, context-aware security policy when it comes to controlling access to a data center. Traffic between the virtual machines needs to be monitored closely by using at least a few standard monitoring tools.

After thoroughly enhancing physical security, it’s time to check security on the inside. A well-configured gateway should be able to enforce security when any virtual machine is reconfigured, migrated, or added. This will help prevent VM sprawls and rogue VMs. Another approach that might help enhance internal security is the use of third-party validation checks, performed in accordance with security standards.

Checking virtual systems for integrity increases the capabilities for monitoring and securing environments. One of the primary focuses of this integrity check should be the seamless integration of existing virtual systems like VMware and virtual box. This would lead to file integrity checking and increased protection against data losses within VMs. Involving agentless anti-malware intrusion detection and prevention in one single virtual appliance (unlike isolated point security solutions) would contribute greatly towards VM integrity checks. This will greatly reduce operational overhead while adding zero footprints.

A server on a cloud may be used to deploy web applications, and in this scenario, an OWASP top-ten vulnerability check will have to be performed. Data on a cloud should be encrypted with suitable encryption and data-protection algorithms. Using these algorithms, we can check the integrity of the user profile or system profile trying to access disk files on the VMs. Profiles lacking security protections can be considered infected by malware. Working with a system ratio of one user to one machine would also greatly reduce risks in virtual computing platforms. To enhance the security aspect even more, after a particular environment is used, it’s best to sanitize the system (reload) and destroy all the residual data. Using incoming IP addresses to determine scope on Windows-based machines, and using SSH configuration settings on Linux machines, will help maintain a secure one-to-one connection.

0
Dipti KC
Dec 19, 2022
More related questions

Questions Bank

View all Questions