There are two major divisions of statistics such as descriptive statistics and inferential statistics. The term **descriptive statistics **deals with collecting, summarizing, and simplifying data, which are otherwise quite unwieldy and voluminous. It seeks to achieve this in a manner that meaningful conclusions can be readily drawn from the data. Descriptive statistics may thus be seen as comprising methods of bringing out and highlighting the latent characteristics present in a set of numerical data. It not only facilitates an understanding of the data and systematic reporting thereof in a manner; and also makes them amenable to further discussion, analysis, and interpretations.

The first step in any scientific inquiry is to collect data relevant to the problem in hand. When the inquiry relates to physical and/or biological sciences, data collection is normally an integral part of the experiment itself. In fact, the very manner in which an experiment is designed, determines the kind of data it would require and/or generate. The problem of identifying the nature and the kind of the relevant data is thus automatically resolved as soon as the design of experiment is finalized. It is possible in the case of physical sciences. In the case of social sciences, where the required data are often collected through a questionnaire from a number of carefully selected respondents, the problem is not that simply resolved. For one thing, designing the questionnaire itself is a critical initial problem. For another, the number of respondents to be accessed for data collection and the criteria for selecting them has their own implications and importance for the quality of results obtained. Further, the data have been collected, these are assembled, organized, and presented in the form of appropriate tables to make them readable. Wherever needed, figures, diagrams, charts, and graphs are also used for better presentation of the data. A useful tabular and graphic presentation of data will require that the raw data be properly classified in accordance with the objectives of investigation and the relational analysis to be carried out.

A well thought-out and sharp data classification facilitates easy description of the hidden data characteristics by means of a variety of summary measures. These include measures of central tendency, dispersion, skewness, and kurtosis, which constitute the essential scope of descriptive statistics. These form a large part of the subject matter of any basic textbook on the subject, and thus they are being discussed in that order here as well.

**Inferential statistics**, also known as inductive statistics, goes beyond describing a given problem situation by means of collecting, summarizing, and meaningfully presenting the related data. Instead, it consists of methods that are used for drawing inferences, or making broad generalizations, about a totality of observations on the basis of knowledge about a part of that totality. The totality of observations about which an inference may be drawn, or a generalization made, is called a population or a universe. The part of totality, which is observed for data collection and analysis to gain knowledge about the population, is called a sample.

The desired information about a given population of our interest; may also be collected even by observing all the units comprising the population. This total coverage is called census. Getting the desired value for the population through census is not always feasible and practical for various reasons. Apart from time and money considerations making the census operations prohibitive, observing each individual unit of the population with reference to any data characteristic may at times involve even destructive testing. In such cases, obviously, the only recourse available is to employ the partial or incomplete information gathered through a sample for the purpose. This is precisely what inferential statistics does. Thus, obtaining a particular value from the sample information and using it for drawing an inference about the entire population underlies the subject matter of inferential statistics. Consider a situation in which one is required to know the average body weight of all the college students in a given cosmopolitan city during a certain year. A quick and easy way to do this is to record the weight of only 500 students, from out of a total strength of, say, 10000, or an unknown total strength, take the average, and use this average based on incomplete weight data to represent the average body weight of all the college students. In a different situation, one may have to repeat this exercise for some future year and use the quick estimate of average body weight for a comparison. This may be needed, for example, to decide whether the weight of the college students has undergone a significant change over the years compared.

Inferential statistics helps to evaluate the risks involved in reaching inferences or generalizations about an unknown population on the basis of sample information. for example, an inspection of a sample of five battery cells drawn from a given lot may reveal that all the five cells are in perfectly good condition. This information may be used to conclude that the entire lot is good enough to buy or not.

Since this inference is based on the examination of a sample of limited number of cells, it is equally likely that all the cells in the lot are not in order. It is also possible that all the items that may be included in the sample are unsatisfactory. This may be used to conclude that the entire lot is of unsatisfactory quality, whereas the fact may indeed be otherwise. It may, thus, be noticed that there is always a risk of an inference about a population being incorrect when based on the knowledge of a limited sample. The rescue in such situations lies in evaluating such risks. For this, statistics provides the necessary methods. These centres on quantifying in probabilistic term the chances of decisions taken on the basis of sample information being incorrect. This requires an understanding of the what, why, and how of probability and probability distributions to equip ourselves with methods of drawing statistical inferences and estimating the degree of reliability of these inferences.